Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.606
Filtrar
1.
Laryngoscope Investig Otolaryngol ; 9(2): e1230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562156

RESUMO

Background and Objectives: Previous studies have shown an association between environmental exposure to heavy metals and hearing loss. However, the findings regarding the relationship between exposure to different metals and hearing loss development are inconsistent. To address this, we conducted a meta-analysis to explore the link between common heavy metal exposures and hearing loss. This study examined the effects of lead (Pb), cadmium (Cd), and mercury (Hg) pollution on hearing loss at various levels, and systematically reviewed the literature on manganese (Mn), barium (Ba), arsenic (As), and hearing loss. Methods: We conducted systematic searches in five major databases, including PubMed, Web of Science, Embase, Cochrane Library, and Scopus. In addition, we searched three Chinese digital libraries: CNKI, Wanfang Data, and Wipu. From an initial pool of 649 articles, we carefully screened and selected 15 articles for further analysis. The effect sizes from these selected studies were synthesized through a meta-analysis to calculate the overall effect size. Results: Our findings showed that: (1) There was a significant association between Pb and Cd exposure and hearing loss; (2) There is a proportional relationship between the increase of metal index detected in blood and hearing loss; (3) In the PTA measurement of hearing loss at different frequencies, the 4 kHz high frequency range had a stronger correlation with hearing loss than the low frequency, with OR 1.44 (1.22, 1.71); and (4) There was a more significant correlation between Barium (Ba) levels in nails and hair than in urine. Conclusions: The study presented evidence of a significant association between human hearing loss and exposure to lead (Pb) and cadmium (Cd). It not only revealed a positive correlation between blood heavy metal concentrations and the incidence of hearing loss but also highlighted that long-term exposure indicators of heavy metals were more indicative of the correlation with hearing loss. Lastly, the study recommends utilizing high frequency 4 kHz for the effective assessment and diagnosis of hearing loss caused by exposure to heavy metals.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38568306

RESUMO

Slovak bentonite was used as an effective natural adsorbent for the removal of Cd(II) and Co(II). Characterization of the samples was conducted using X-ray diffraction (XRD), high-resolution scanning electron microscopy with an X-ray energy dispersion spectrometer (SEM-EDS), and infrared spectroscopy (FT-IR). Adsorption experiments were carried out for pure water and artificial seawater, each containing cobalt and cadmium cations within the concentration range of 5-60 mg/L. The highest bentonite adsorption capacities of the tested bentonites were 23.5 (Cd) and 32.2 (Co) mg g-1. The kinetics data revealed that, in addition to chemisorption, intraparticle diffusion contributes to metal removal. The physical and structural properties of bentonites play an important role in adsorption. Bentonite P 135 from the Lieskovec deposit showed the highest efficiency for removing both ions, with removal percentages exceeding 90% and 77.5% for pure water and artificial seawater, respectively. The results indicate the suitability of using Slovak bentonites as an alternative sorbent for both metal extractions. The mechanism of metal ion adsorption on bentonite clay can be understood through surface complexation and ion exchange. The examined bentonite deposits show potential as promising natural sorbents for the removal of cobalt and cadmium cations from polluted waters.

3.
Environ Monit Assess ; 196(5): 417, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570421

RESUMO

Heavy metals can have significant impacts on human health due to their toxicity and potential to accumulate in the body over time. Some heavy metals, such as lead, cadmium, mercury, and arsenic, are particularly harmful even at low concentrations. The estimation of hazards of vegetable intake to human health as well as explore the of heavy metals accumulation in different vegetables (cucumbers, tomato, eggplant, and bell peppers) collected in Erbil city from different source locally and imported from nearby country are conducted. The heavy metals concentration (cooper, zinc, lead and cadmium) was measured and analyzed by inductively coupled plasma-optical emission spectrophotometry. The maximum concentration of Pb was 27.95 mg/kg and the minimum was 6.49 mg/kg; for Cd, the concentration was 1.43 and 0.99 mg/kg, 74.94 and 5.14 mg/kg for Zn; and for Cu, the result was 56.25 and 8.2 mg/kg for the maximum and minimum, which they are within limits described by Food Agricultural Organization, but more than health limits and health risks calculated by mean of hazard quotient (HQ) techniques for Cu and Pb which they are more than 1. The local sample that collected in Erbil city show less concentration of heavy metals and low HQ in comparison with imported samples. The carcinogenic risk study shows elevated risk of accumulative consuming of edible part of those plant which they exceed the permissible limit that is 10-6.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Verduras , Cádmio/análise , Iraque , Chumbo , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise
4.
Heliyon ; 10(7): e28288, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571600

RESUMO

The growing consumer interest fueled by the belief in the superiority of organic foods raises questions about their actual nutritional superiority over conventional ones. This assumption remains a controversial issue. The present study addresses scientific evidence to clarify this controversy and provide relevant insights for informed decision-making regarding dietary choices. We collected 147 scientific articles containing 656 comparative analyses based on 1779 samples of 68 vegetable, fruit, and other (cereals, pulses, etc.) foods, 22 nutritional properties, and nine residues. Results show that in 191 (29.1%) comparisons, there were significant differences between organic and conventional foods. In a similar quantity of cases (190; 29.0%), there were divergences in the results since some studies reported significant differences while others did not. Finally, most of the comparative analyses (275; 41.9%) showed no significant difference between organic and conventional foods. Therefore, the results herein show no generalizable superiority of organic over conventional foods. Claims for nutritious advantages would eventually be applied to specific comparisons, depending on the food type and nutritional parameter.

5.
Int J Biol Macromol ; 266(Pt 2): 131192, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574641

RESUMO

The present study reports on the selective and sensitive detection of metals using xanthan gum-capped chromia nanoparticles (XG-CrNPs). The nanoparticles were synthesized by the chemical reduction method using sodium borohydride and xanthan gum as the reducing and capping agents, respectively. The synthesis of XG-CrNPs was confirmed by the appearance of the two absorption peaks at 272 nm and 371 nm in the UV-visible region. The nanoparticles have been extensively characterized by FTIR, TEM-EDX, XRD, and TGA analyses. The well-dispersed XG-CrNPs exhibited a quasi-spherical structure with an average particle size of 3 nm. A significantly low amount (2 µg/L) of XG-CrNPs was used for selective and sensitive detection of heavy metal ions. It showed excellent metal detecting properties by quenching its band gap signal which was extraordinarily conspicuous for Co(II), Hg(II), and Cd(II) in comparison to other metal ions like Ag(I), Ba(II), Mg(II), Mn(II), Ni(II), and Zn(II). The limit of detection of Co(II), Cd(II), and Hg(II) with this nanoprobe was found to be 2.167 µM, 1.065 µM, and 0.601 µM respectively. The nanoparticles manifested higher shelf-life and can be reused up to three consecutive cycles where most of its activity was conserved even after being used. Thus, it may find use in metal sensor devices for the detection of hazardous metals.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38575820

RESUMO

Microplastics (MPs) migrate by adsorbing heavy metals in aquatic environments and act as their carriers. However, the aging mechanisms of MPs in the environment and the interactions between MPs and heavy metals in aquatic environments require further study. In this study, two kinds of materials, polyamide (PA) and polylactic acid (PLA) were used as target MPs, and the effects of UV irradiation on the physical and chemical properties of the MPs and the adsorption behavior of Cu(II) were investigated. The results showed that after UV irradiation, pits, folds and pores appeared on the surface of aged MPs, the specific surface area (SSA) increased, the content of oxygen-containing functional groups increased, and the crystallinity decreased. These changes enhanced the adsorption capacity of aged MPs for Cu(II) pollutants. The adsorption behavior of the PA and PLA MPs for Cu(II) conformed to the pseudo-second-order model and Langmuir isotherm model, indicating that the monolayer chemical adsorption was dominant. The maximum amounts of aged PA and PLA reached 1.415 and 1.398 mg/g, respectively, which were 1.59 and 1.76 times of virgin MPs, respectively. The effects of pH and salinity on the adsorption of Cu(II) by the MPs were significant. Moreover, factors such as pH, salinity and dosage had significant effects on the adsorption of Cu(II) by MPs. Oxidative complexation between the oxygen-containing groups of the MPs and Cu(II) is an important adsorption mechanism. These findings reveal that the UV irradiation aging of MPs can enhance the adsorption of Cu(II) and increase their role as pollutant carriers, which is crucial for assessing the ecological risk of MPs and heavy metals coexisting in aquatic environments.

7.
Heliyon ; 10(7): e28030, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596039

RESUMO

Environmental challenges related to sewage sludge call for urgent sustainable management of this resource. Sludge pyrolysis might be considered as a sustainable technology and is anticipated to support measures for mitigating climate change through carbon sequestration. The end products of the process have various applications, including the agricultural utilization of biochar, as well as the energy exploitation of bio-oil and syngas. In this research, sewage sludge was pyrolyzed at 500 °C, 600 °C, 750 °C, and 850 °C. At each temperature, pyrolysis was explored at 1hr, 2hrs, and 3hrs residence times. The ratio (H/Corg)at was tapped to imply organic carbon stability and carbon sequestration potential. Optimum operating conditions were achieved at 750 °C and 2hrs residence time. Produced biochar had (H/Corg)at ratio of 0.54, while nutrients' contents based on dry weight were 3.99%, 3.2%, and 0.6% for total nitrogen (TN), total phosphorus (TP), and total potassium (TK), respectively. Electrical conductivity of biochar was lesser than the feed sludge. Heavy metals in biochar aligned with the recommended values of the International Biochar Initiative. Heat content of condensable and non-condensable volatiles was sufficient to maintain the temperature of the furnace provided that PYREG process is considered. However, additional energy source is demanded for sludge drying.

8.
J Environ Manage ; 358: 120821, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599087

RESUMO

In electroplating sludge, iron (Fe) and aluminum (Al) are common impurities that need to be separated before recycling valuable heavy metals. However, the traditional Fe/Al separation process often leads to significant losses of heavy metals. To address this issue, a new approach was developed to sequentially separate Fe/Al and recycle chromium (Cr) and nickel (Ni) from real electroplating sludge. The sludge contained 4.5% Cr, 1.2% Al, 1.1% Ni, and 14.6% Fe. Initially, the sludge was completely dissolved in a mixture of hydrochloric and nitric acids. The resulting acid solution was then heated to 160 °C for 10 h with the addition of saccharose. This hydrothermal treatment led to the hydrolysis and crystallization of 98.3% of Fe, 31.8% of Cr, 1.1% of Al, and 4.9% of Ni, forming akaganeite-bearing particles. It was observed that the excessive amount of saccharose also improved the removal of Cr, Al, and Ni, but decreased the removal of Fe. After the hydrothermal treatment, the remaining supernatant was adjusted to different pH levels (1.9, 2.9, and 4.5, respectively), and then Al, Cr, and Ni were stepwise extracted using di-(2-ethylhexyl) phosphate acid (P204). The recycling efficiencies achieved were 97.4% for Al, 61.2% for Cr, and 89.3% for Ni. This approach provides a promising method for the stepwise separation of Fe/Al and the recycling of heavy metals from electroplating sludge.

9.
Ecotoxicol Environ Saf ; 276: 116301, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599159

RESUMO

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38602637

RESUMO

People are increasingly using black soldier fly larvae (BSFL) as a sustainable waste management solution. They are high in protein and other essential nutrients, making them an ideal food source for livestock, poultry, and fish. Prior laboratory studies with BSFL developed on pure mushroom root waste (MRW) showed poor conversion efficiency compared to a regular artificial diet. Therefore, we mixed the nutrient-rich soybean curd residues (SCR) with MRW in different ratios (M2-M5). Pure mushroom root waste (M1, MRW 100%) had the lowest survival rate (86.2%), but it increased up to 96.9% with the SCR percentage increasing. M1 had the longest developmental period (31.1 days) and the lowest BSFL weight (7.4 g). However, the addition of SCR reduced the development time to 22.0 and 21.5 days in M4 (MRW 40%, SCR 60%) and M5 (MRW 20%, SCR 80%), respectively, and improved the larval weight to 10.9 g in M4 and 11.8 g in M5. Other groups did not have as much feed conversion ratio (FCR) (8.4 for M4 and M5), bioconversion (M4 5.4%; M5 5.9%), or lipid content (M4 25.2%; M5 24.3%). These mixtures did. Compare this to M1. We observed better results, with no significant differences between the M4 and M5 groups and their parameters. In the present study, our main target was to utilize more MRW. Therefore, we preferred the M4 group in our nutritional and safety investigation and further compared it with the artificial diet (M7). The heavy metals and essential amino acids (histidine 3.6%, methionine 2.7%, and threonine 3.8%) required for human consumption compared to WHO/FAO levels showed satisfactory levels. Furthermore, fatty acids (capric acid 1.9%, palmitic acid 15.3%, oleic acid 17.3%, and arachidonic acid 0.3%) also showed higher levels in M4 than M7. The SEM images and FT-IR spectra from the residues showed that the BSFL in group M4 changed the structure of the compact fiber to crack and remove fibers, which made the co-conversion mixture better.

11.
Environ Geochem Health ; 46(5): 166, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592562

RESUMO

Cadmium (Cd) pollution ranks first in soils (7.0%) and microplastics usually have a significant adsorption capacity for it, which could pose potential threats to agricultural production and human health. However, the joint toxicity of Cd and microplastics on crop growth remains largely unknown. In this study, the toxic effects of Cd2+ and two kinds of microplastic leachates, polyvinyl chloride (PVC) and low-density polyethylene (LDPE), on wheat seed germination and seedlings' growth were explored under single and combined conditions. The results showed that Cd2+ solution and two kinds of microplastic leachates stimulated the wheat seed germination process but inhibited the germination rate by 0-8.6%. The combined treatments promoted wheat seed germination but inhibited the seedlings' growth to different degrees. Specifically, the combination of 2.0 mg L-1 Cd2+ and 1.0 mgC L-1 PVC promoted both seed germination and seedlings' growth, but they synergistically increased the antioxidant enzyme activity of seedlings. The toxicity of the PVC leachate to wheat seedlings was stronger than LDPE leachate. The addition of Cd2+ could alleviate the toxicity of PVC leachate on seedlings, and reduce the toxicity of LDPE leachate on seedlings under the same concentration class combinations but aggravated stress under different concentration classes, consistent with the effect on seedlings' growth. Overall, Cd2+, PVC, and LDPE leachates have toxic effects on wheat growth, whether treated under single or combined treatments. This study has important implications for the joint toxicity of Cd2+ solution and microplastic leachates in agriculture.


Assuntos
Plântula , Triticum , Humanos , Germinação , Cádmio/toxicidade , Microplásticos , Plásticos , Polietileno , Sementes , Antioxidantes
12.
Artigo em Inglês | MEDLINE | ID: mdl-38594563

RESUMO

To elucidate the effects of long-term (20 years) afforestation with different woody plant species on the soil microenvironment in coal gangue polymetallic contaminated areas. This study analyzed the soil physicochemical properties, soil enzyme activities, soil ionophore, bacterial community structure, soil metabolite, and their interaction relationships at different vertical depths. Urease, sucrase, and acid phosphatase activities in the shallow soil layers increased by 4.70-7.45, 3.83-7.64, and 3.27-4.85 times, respectively, after the restoration by the four arboreal plant species compared to the plant-free control soil. Additionally, it reduced the content of available elements in the soil and alleviated the toxicity stress for Cd, Ni, Co, Cr, As, Fe, Cu, U, and Pb. After the long-term restoration of arboreal plants, the richness and Shannon indices of soil bacteria significantly increased by 4.77-23.81% and 2.93-7.93%, respectively, broadening the bacterial ecological niche. The bacterial community structure shaped by different arboreal plants exhibited high similarity, but the community similarity decreased with increasing vertical depth. Soils Zn, U, Sr, S, P, Mg, K, Fe, Cu, Ca, Ba, and pH were identified as important influencing factors for the community structure of Sphingomonas, Pseudarthrobacter, Nocardioides, and Thiobacillus. The metabolites such as sucrose, raffinose, L-valine, D-fructose 2, 6-bisphosphate, and oxoglutaric acid were found to have the greatest effect on the bacterial community in the rhizosphere soils for arboreal plants. The results of the study demonstrated that long-term planting for woody plants in gangue dumps could regulate microbial abundance and symbiotic patterns through the accumulation of rhizosphere metabolites in the soil, increase soil enzyme activity, reduce heavy metal levels, and improve the soil environment in coal gangue dumps.

13.
Int J Phytoremediation ; : 1-13, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591171

RESUMO

Brassware industry constitutes the second most polluting industrial sector in Fez city, Morocco, owing to its high heavy metal load. The aim of this study is to examine and evaluate the performance of vertical flow constructed wetlands in treating brassware effluents using various plant species. Ten treatment systems were planted with four types of plants: Chrysopogon zizanioides, Typha latifolia, Phragmites australis, and Vitex agnus-castus, while another system remained unplanted. These systems underwent evaluation by measuring various parameters, including pH, electrical conductivity, suspended solids, chemical oxygen demand, biological oxygen demand, sulfates, orthophosphates, total Kjeldhal nitrogen, ammonium, nitrates, nitrites, and heavy metals such as silver, copper, and nickel, using standard methods over of ten weeks. The results obtained demonstrate effectiveness of these systems. When planted with Ch. zizanioides, the systems achieved elimination rates of 83.64%, 98.55%, 91.48%, 86.82%, 80.31%, 96.54%, 98%, and 98.82% for suspended solids, ammonium, nitrites, BOD5, sulfates, orthophosphates, silver, and nickel, respectively. System with V. agnus-castus showed significant reductions in nitrate and copper, with rates of 84.48% and 99.10%, respectively. Considerable decrease in pH and electrical conductivity values was observed in all systems, with a notable difference between planted and control systems regarding effectiveness of treatment for other parameters.


The novelty of this study lies in the application of constructed wetlands for the treatment of brassware effluents in the city of Fez, Morocco. Consequently, a comparison was conducted to assess the removal efficiency of Chrysopogon zizanioides (L.) Roberty and Vitex agnus-castus L., in comparison to Typha latifolia L. and Phragmites australis (Cav.) Trin. These four plant species were specifically chosen for their high elimination capacity and resistance to the toxicity of the pollutants. Notably, this study represents an unexplored aspect in the existing literature. Nevertheless, T. latifolia and P. australis have been extensively utilized in constructed wetlands for treating diverse wastewaters. The findings from this study can also be extrapolated to pilot-scale constructed wetlands, offering valuable insights for the removal of pollutants from brassware wastewater.

14.
Environ Res ; 252(Pt 1): 118862, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574984

RESUMO

The escalating issue of air pollution has become a significant concern in urban regions, including Islamabad, Pakistan, due to the rise in air pollutant emissions driven by economic and industrial expansion. To gain a deeper understanding of air pollution, a study was conducted during winter 2022-2023, assessing physical, chemical, and biological factors in Islamabad. The findings revealed that the average concentration of fine particulate matter (PM2.5) was notably greater than the World Health Organization (WHO) guidelines, reaching 133.39 µg/m³. Additionally, the average concentration of bacteria (308.64 CFU/m³) was notably greater than that of fungi (203.55 CFU/m³) throughout the study. Analytical analyses, including SEM-EDS and FTIR, showed that the PM2.5 in Islamabad is composed of various particles such as soot aggregates, coal fly ash, minerals, bio-particles, and some unidentified particles. EF analysis distinguished PM2.5 sources, enhancing understanding of pollutants origin, whereas Spearman's correlation analysis elucidated constituent interactions, further explaining air quality impact. The results from the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) indicated a gradual increase in the total elemental composition of PM2.5 from autumn to winter, maintaining high levels throughout the winter season. Furthermore, a significant variation was found in the mass concentration of PM2.5 when comparing samples collected in the morning and evening. The study also identified the presence of semi-volatile organic compounds (SVOCs) in PM2.5 samples, including polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds, with notable variations in their concentrations. Utilizing health risk assessment models developed by the US EPA, we estimated the potential health risks associated with PM2.5 exposure, highlighting the urgency of addressing air quality issues. These findings provide valuable insights into the sources and composition of PM2.5 in Islamabad, contributing to a comprehensive understanding of air quality and its potential environmental and health implications.

15.
Environ Pollut ; 349: 123881, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580063

RESUMO

Microalgae and macrophytes are commonly used as human and animal food supplements. We examined the cultivation of the microalgae Chlorella sorokiniana and the duckweed Lemna minor in thermal waters under batch and sequencing batch conditions and we characterized the produced biomass for the presence of essential nutrients as well as for heavy metals and radioisotope content. The highest specific growth rate for the microalgae was observed when 5 or 15 mg/L N were supplemented while the optimal conditions for Lemna minor were observed in the co-presence of 5 mg/L N and 1.7 mg/L P. Lemna minor presented higher concentrations of proteins and lipids comparing to the studied microalgae. Both organisms contained high amounts of lutein (up to 1378 mg/kg for Lemna minor) and chlorophyll (up to 1518 mg/kg for Lemna minor) while ß-carotene and tocopherols were found at lower concentrations, not exceeding a few tens of mg/kg. The heavy metal content varied between the two species. Lemna minor accumulated more Cd, Cu, K, Mn, Na, Ni, and Zn whereas Al, Ca and Mg were higher in Chlorella sorokiniana. Both organisms could be a significant source of essential metals but the occasional exceedance of the statutory levels of toxic metals in food products raises concern for potential risk to either humans or animals. Application of gamma-spectroscopy to quantify the effective dose to humans from 228Ra, 226Ra and 40K showed that Chlorella sorokiniana was well under the radiological limits while the collected mass of Lemna minor was too small for radiological measurements with confidence.

16.
Toxicol Rep ; 12: 375-388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584719

RESUMO

Niger Delta has become popular for crude oil extraction for the past few decades. This uncoordinated activity has made it a hotspot for xenobiotics exposure and water bodies remain the environmental matrix significantly affected. One of the most deleterious components of crude oil is heavy metals (HMs). This study investigates HMs concentration in water and serum of humans residing in an oil-host community with the consideration of systemic effects, pollution status, carcinogenic and non-carcinogenic health risks and comparison made with residents from a non-oil-producing community. Heavy metal analysis, serum electrolytes, Urea, Creatinine, and liver enzymes were assessed using standard procedures; malondialdehyde, catalase, SOD, glutathione reductase, GPx and total antioxidant capacity (TAC) by spectrophotometry and TNF-α and 8-OHdG assessed via ELISA method. We found altered serum electrolytes; increased serum Pb and Cd levels; increased AST, ALT, ALP and lipid peroxidation; and decreased enzymes antioxidants including TAC among Ugbegugun community residents compared with control. We observed an association between environmental crude oil contamination, ecological and health risks in the community. We concluded that protracted exposure to HMs induces multi-systemic toxicities characterized by DNA damage, depletion of the antioxidant system, and increased free radical generation culminating lipo-peroxidation with significant ecological, carcinogenic, and non-carcinogenic risks characterize crude oil water contamination.

17.
Environ Pollut ; 349: 123927, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582184

RESUMO

The recovery phase of mangrove seedlings in coastal wetland ecosystems can be negatively affected by exposure to external pollutants. This study aimed to investigate the impact of microplastics (MPs) influx, specifically polystyrene (PS) and polymethyl methacrylate (PMMA), on the growth of Aegiceras corniculatum seedlings and their accumulation of heavy metals (HMs). PS and PMMA significantly increased HMs accumulation (up to 21.0-548%), particularly in the roots of seedlings, compared to the control treatment (CK). Additionally, elevated activities of malondialdehyde and catalase enzymes were observed in the leaves of seedlings, while peroxidase enzyme activity decreased. Topological analysis of the root sediment microbiota coexistence network revealed that the modularization data increased from 0.69 (CK treatment) to 1.07 (PS treatment) and 5.11 (PMMA treatment) under the combined stress of MPs and HMs. This suggests that the introduction of MPs intensifies microbial modularization. The primary cause of increased HMs accumulation in plants is the MPs input, which influences the secretion of organic acids by plants and facilitates the shift of HMs in sediment to bioavailable states. Furthermore, changes in microbial clustering may also contribute to the elevated HMs accumulation in plants. This study provides valuable insights into the effects of external pollutants on mangrove seedlings and offers new perspectives for the preservation and restoration of mangrove coastal wetlands.

18.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591411

RESUMO

Valorization of high-volume mine tailings could be achieved by the development of new geopolymers with a low CO2 footprint. Materials rich in aluminum and silicon with appropriate solubility in an alkaline medium can be used to obtain a geopolymer. This paper presents a study of copper mine tailings from Bulgaria as precursors for geopolymers. Particle size distribution, chemical and mineralogical composition, as well as alkaline reactivity, acidity and electroconductivity of aqueous slurry are studied. The heavy metal content and their mobility are studied by leaching tests. Sequential extraction was applied to determine the geochemical phase distribution of heavy metals. The studied samples were characterized by high alkalinity, which could favor the geopolymerization process. The water-soluble sulphates were less than 4%. The Si/Al ratio in mine tailing was found to be 3. The alkaline reactivity depended more so on the time of extraction than on the concentration of NaOH solution. The main part of the heavy metals was found in the residual fraction; hence, in high alkaline medium during the geopolymerization process, they will stay fixed. Thus, the obtained geopolymers could be expected to exert low environmental impact. The presented results revealed that studied copper mine tailing is a suitable precursor for geopolymerization.

19.
Materials (Basel) ; 17(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38591543

RESUMO

Elevated concentrations of heavy metals in natural waters can cause significant ecological problems. It is therefore essential to ensure their removal from any water discharged into the environment immediately, especially in case of an accident, where there is a risk of releasing large quantities or high concentrations. The aim of this paper is to test a newly developed adsorbent for the removal of heavy metals from aqueous solutions-in particular, it is very fast adsorption, and thus efficiency, during clean-ups. The alkali-activated foamed zeolite adsorbent was laboratory-prepared and -tested in both batch and flow-through arrangements on single and multi-component solutions and compared with natural zeolite. The experimental setup for batch adsorption consisted of a set of samples and solutions containing iron, cobalt, manganese, zinc and nickel. The samples were put on a horizontal shaker with a 500 mg adsorbent loading in a 50 mL solution. The column adsorption experimental setup consisted of a glass column with an inside diameter of 15 mm and a bed length of 165 mm. A measured amount of each adsorbent was added to the column to achieve a filter fixed-bed height of 160 mm. The high efficiency of the tested adsorbent on various heavy metals was confirmed. The adsorbent has a high potential for use in decontamination processes, water protection and landscape revitalization. Due to its rapid precipitation and subsequent fixation of metal cations in the form of insoluble oxide or hydroxide, it can be used as an emergency adsorbent, the great advantage of which is its low production cost and natural origin.

20.
Chemosphere ; 356: 141878, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582172

RESUMO

In this study, a sulfur-modified magnetic hydrochar was synthesized by grafting thiol-containing groups onto the sludge-derived hydrochar. The modified hydrochar exhibited effective adsorption of Cu2+, Pb2+, Zn2+, and Cd2+ over a wide pH range and in the presence of coexisting ions, and showed almost no secondary leaching in three acidic solutions. In the mult-metal ion system, the modified hydrochar exhibited maximum adsorption capacities were 39.38, 105.74, 26.53, and 38.11 mg g-1 for Cu2+, Pb2+, Zn2+, and Cd2+, respectively. However, the binding capacity and adsorption amount of modified hydrochar for metal ions were lower in the mult-metal ion system compared to the unit-metal ion system. Notably, Pb2+ showed a strong inhibitory effect on the adsorption of other heavy metal ions by modified hydrochar due to strong competition for xanthate functional groups. The Pb2+ occupied the xanthate and native functional groups (-OH, -NH2, and Fe-O etc.), leaving only a small amount of adsorption sites for Cu2+, Zn2+ and Cd2+. Simulation results further supported these findings, indicating that Pb2+ had the highest density profiles near the four functional groups, and the density profiles of the four heavy metals near the xanthate functional groups were greater compared to the other three functional groups. Furthermore, the SEM-EDS, TOF-SIMI, and XPS results indicated that modified hydrochar achieved excellent mineral binding mainly through electrostatic interaction, ion exchange, and chelation. Overall, these results highlight the sulfur-modified magnetic hydrochar as a highly efficient adsorbent for heavy metals in environmental applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA